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Using the simultaneous generalized Schur
decomposition as a Candecomp/Parafac
algorithm for ill-conditioned data
Alwin Stegemana∗

The Candecomp/Parafac (CP) method decomposes a three-way array into a prespecified number R of outer product
arrays, by minimizing the sum-of-squares of the residual array. The practical use of CP is sometimes complicated by
the occurrence of so-called ‘degenerate’ sequences of solutions, in which several outer product arrays become highly
correlated in all three modes and some elements of the outer product arrays become very large in magnitude. It is
known that for I × J × 2 arrays, fitting a simultaneous generalized Schur decomposition (SGSD) avoids the problems
of ‘degeneracy’ due to the non-existence of an optimal CP solution. In this paper, we consider the application of the
SGSD method also for other array formats, when the array has a best fitting CP decomposition with ill-conditioned
component matrices, in particular such that it resembles the pattern of a ‘degeneracy’. For these cases, we compare
the performance of two SGSD algorithms and the alternating least squares (ALS) CP algorithm in a series of numerical
experiments. Copyright © 2009 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

Carroll and Chang [1] and Harshman [2] independently
proposed the same method for component analysis of three-
way arrays, and named it Candecomp and Parafac, respectively.
In the Candecomp/Parafac (CP) model, an I × J × K array X is
decomposed into a prespecified number of R outer product arrays
and a residual term, i.e.

X =
R∑

r=1

ωr (a
(r) ◦ b(r) ◦ c(r)) + E (1)

where ◦ denotes the outer product, ωr are the weights of the
outer product arrays anda(r),b(r) and c(r) are the I-, J- and K -vectors
forming the outer product arrays, with‖a(r)‖ = ‖b(r)‖ = ‖c(r)‖ = 1
for r = 1, . . . , R, where ‖ · ‖ denotes the Frobenius norm. The
(i, j, k)-element of the outer product array a(r) ◦ b(r) ◦ c(r) equals
a(r)

i b(r)
j c(r)

k . We assume the weights ωr to be nonnegative. For fixed
R, the CP decomposition (1) is found by minimizing the sum-of-
squares of E. Several iterative algorithms exist for this purpose,
see e.g. Tomasi and Bro [3].

We consider the real-valued CP model, i.e. we assume the
array X and the decomposition to be real-valued. The real-
valued CP model is used in a majority of applications in
psychology and chemistry; see Kroonenberg [4] and Smilde,
Bro and Geladi [5]. Complex-valued applications of CP occur
in e.g. signal processing and telecommunications research; see
Sidiropoulos, Giannakis and Bro [6] and Sidiropoulos, Bro and
Giannakis [7].

The three-way rank of X is usually defined as the following
generalization of matrix rank: the smallest number of rank-1 arrays
whose sum equals X. A three-way array has rank 1 if it is the outer

product of three vectors. Hence, in the CP decomposition (1) each
of the R outer product arrays has rank 1. The three-way rank of
X is equal to the smallest number of components for which a CP
decomposition exists with perfect fit, i.e., with an all-zero residual
term E. Moreover, it follows that solving the CP model boils down
to finding a best rank-R approximation of X in terms of smallest
sum-of-squares distance. Since we consider the real-valued CP
model, the rank of any array is assumed to be the rank over the
real field.

A matrix notation of the CP model (1) is as follows. Let Xk (I × J)
and Ek (I × J) denote the kth frontal slices ofX and E, respectively.
Then Equation (1) can be written as

Xk = ACk�B
T + Ek, k = 1, . . . K (2)

where A (I × R) and B (J × R) have the vectors a(r) and b(r) as
columns, respectively, � (R × R) is the diagonal matrix with the
weights ωr on its diagonal, and Ck (R × R) is the diagonal matrix
with the kth elements of the vectors c(r) on its diagonal. The
model part of the CP model is characterized by (A, B, C, �), where
C (K × R) has the vectors c(r) as columns. We refer to A, B, C as the
component matrices and to � as the weights matrix.
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For later use, we mention that the CP model (1) is a special case
of the Tucker3 model of Tucker [8]. The latter is defined as

X =
R∑

r=1

P∑

p=1

Q∑

q=1

grpq

(
a(r) ◦ b(p) ◦ c(q)

) + E (3)

Clearly, the case with R = P = Q and grpq = 0 if (r, p, q) �= (r, r, r)
yields Equation (1). The R × P × Q array G with entries grpq is
referred to as the core array.

The most attractive feature of the CP model is its uniqueness
property. Kruskal [9] has shown that, for fixed residuals E, the
vectors a(r), b(r) and c(r) and the weights ωr are unique up to sign
changes and a reordering of the summands in Equation (1) if

kA + kB + kC ≥ 2R + 2 (4)

where kA, kB, kC denote the k-ranks of the component matrices.
The k-rank of a matrix is the largest number x such that every
subset of x columns of the matrix is linearly independent. Hence,
contrary to the matrix principal components model, the CP
components are rotationally unique if Equation (4) holds. See
Stegeman and Sidiropoulos [10] for a more accessible proof of
Kruskal’s [9] uniqueness condition.

The practical use of CP algorithms to fit the CP model
is sometimes complicated by the occurrence of so-called
‘degenerate’ sequences of CP updates. In such cases, convergence
of a CP algorithm becomes very slow (it seems to be caught in
a ‘swamp’, see Mitchell and Burdick [11]), some columns of the
component matrices become more and more correlated as the CP
algorithm runs longer, and the weights ωr of the corresponding
outer product arrays become very large. These phenomena
were first reported in Harshman and Lundy [12]. Since the term
degeneracy has a different meaning in Mathematics, we will refer
to the symptoms described above as ‘degeneracy’ throughout
the paper.

In this paper, we present an overview of the literature
on the occurrence of different types of ‘degeneracy’ when
fitting the CP model (Section 2). In Section 3, we discuss
how to avoid the problems of ‘degeneracy’ due to the non-
existence of an optimal CP solution. For I × J × 2 arrays, fitting
a simultaneous generalized Schur decomposition (SGSD) is a
cure against this type of ‘degeneracy’. In Section 4, we argue
for the application of the SGSD method also for other array
formats, when the array has a best fitting CP decomposition
with ill-conditioned component matrices, in particular such
that it resembles the pattern of a ‘degeneracy’. In Section 5,
we compare the performance of two SGSD algorithms and
the alternating least squares (ALS) CP algorithm in a Monte
Carlo study. Finally, Section 6 contains a discussion of our
findings.

2. THE OCCURRENCE OF ‘DEGENERACY’
WHEN RUNNING A CP ALGORITHM

Here, we present an overview of the literature on the occurrence
of ‘degeneracy’ when fitting the CP model. When ‘degeneracy’ is
observed, most often exactly two components are involved and
they show the following pattern:

• In A, B and C, the columns s and t become nearly equal up to a
sign change, the product of these sign changes being −1.

• The weights ωs and ωt become very large.

This pattern is referred to as a ‘two-factor degeneracy’. The
two outer product arrays involved in the ‘degeneracy’ diverge
in nearly opposite directions, while their sum still contributes
to a better CP fit. Also ‘degeneracies’ involving three or more
components can be encountered, see Paatero [13] and Stegeman
[14–16].

In applications of the CP model the following two types of
‘degeneracy’ have been encountered (for a fixed number of
components R and data array X):

I As the CP algorithm runs, the CP objective value decreases
slower and slower, and the pattern of ‘degeneracy’ becomes
more and more severe when the algorithm runs longer.
Choosing different starting values cannot change this behavior.

II After going through a phase of slow convergence (a
‘swamp’) with highly correlated components, the CP algorithm
terminates with an optimal solution.

In the formulations above, we assume that the CP algorithm used
is designed to minimize the sum-of-squares of the residual array
E.

Type I ‘degeneracy’ is also referred to as ‘strong degeneracy’,
‘unbounded degeneracy’ or ‘diverging CP components’. This is
a serious problem to the application of the CP model, since
these type of outcomes of the CP algorithm do not yield
directly interpretable results. Recent work has shown that type
I ‘degeneracy’ is a mathematical property of the approximation
problem the CP algorithm is trying to solve. Recall that the CP
algorithm is trying to find a best rank-R approximation to the
array X. In practice, usually X has rank higher than R and, hence,
lies outside of the set of arrays of rank at most R. Let

DR = {Y ∈ RI×J×K : Y has rank at most R} (5)

Then the CP problem can be formulated as

Minimize ‖X − Y‖2 (6)

subject to Y ∈ DR

When X does not lie inside the set DR , an optimal CP solution
(if it exists) will be a boundary point of DR . Hence, problems
may arise when the boundary points of DR do not lie in DR ,
i.e. when the set DR is not closed. De Silva and Lim [17] show
that D1 is closed but DR is not closed for R = 2, . . . , min(I, J, K ). It
follows that a best rank-1 approximation of X always exists, but a
best rank-R approximation (i.e. an optimal CP solution) may not
exist for 2 ≤ R ≤ min(I, J, K ). Also, De Silva and Lim [17] show that
no 2 × 2 × 2 array of rank 3 has a best rank-2 approximation.
Numerical experiments and mathematical analysis yield the
conjecture that I × I × 2 arrays of rank I + 1 do not have a
best rank-I approximation (Stegeman [14]). In Stegeman [16]
such conjectures are formulated for all I × J × 2 arrays and all
values of R, while Stegeman [15] considers several I × J × 3
arrays.

Kruskal et al. [18] conjectured that the non-existence of an
optimal CP solution is the cause for type I ‘degeneracy’. They
reason that any sequence of CP updates produced by a CP
algorithm, that approaches the boundary of DR such that the

www.interscience.wiley.com/journal/cem Copyright © 2009 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 385–392
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objective value approaches to the infimum of the CP objective
function, must fail to converge and displays the pattern of
‘degeneracy’. This reasoning has been proven correct by Krijnen
et al. [19].

Further analysis of type I ‘degeneracy’ is done by Stegeman
[14,16], who characterizes the boundary points of DR for all
I × J × 2 arrays and all values of R, and shows that if a sequence of
CP updates converges to a boundary point of DR not lying in DR

itself, then the pattern of ‘degeneracy’ appears. Analogous results
for several I × J × 3 arrays can be found in Stegeman [15].

Type II ‘degeneracy’ is also referred to as ‘weak degeneracy’ or
‘bounded degeneracy’. It is first described in Mitchell and Burdick
[11], who note that ‘swamps’ and ‘degeneracy’ tend to occur
together. Type II ‘degeneracy’ occurs while the CP problem has an
optimal solution. To get to the optimal solution faster, several
attempts have been made to design modified CP algorithms
that spend less time in ‘swamps’, see e.g. Rayens and Mitchell
[20], Kiers [21], Cao et al. [22], Rajih et al. [23], Zhao [24] and
Navasca et al. [25]. Type II ‘degeneracy’ may also be overcome
by choosing a different starting value. Paatero [13] constructs
a 2 × 2 × 2 example in which R = 2 and X has rank 2, but the
region between X and the starting value is a ‘swamp’, i.e. a
region where the CP updates of A, B and C have nearly collinear
columns. As a result, a type II ‘degeneracy’ occurs. For some
starting values the sequence of CP updates does not even get
to X, but terminates inside the ‘swamp’. This is evidence that also
‘swamps’, like type I ‘degeneracy’, are a mathematical property of
the set DR . In particular, the analysis of Stegeman [14–16] shows
that ‘swamps’ occur near parts of the boundary ofDR where most
of the boundary points do not lie in DR itself. This confirms the
ideas expressed in Mitchell and Burdick [11] and Paatero [13].

Although it is generally believed that slow convergence of CP
algorithms occurs due to near linear dependence in the columns
of the updates of A, B and C, no theoretical results are known to
the author that confirm this claim. It would be interesting to see
how the pattern of ‘degeneracy’ in A, B and C affects the updates
in the ALS CP algorithm, or in the gradient-based CP algorithms
described in Tomasi and Bro [3]. This, however, is beyond the
scope of this paper.

3. AVOIDING THE PROBLEMOF TYPE I
‘DEGENERACY’

Here, we review the literature on ways to overcome the
problem of type I ‘degeneracy’. As explained in Section 2, type
I ‘degeneracy’ occurs due to the non-existence of an optimal CP
solution.

The CP model is shown to have an optimal solution
when orthogonality constraints are imposed on (one of ) the
components matrices, see Krijnen et al. [19]. Also, Lim [26] shows
that an optimal solution exists when X is non-negative and
the component matrices are restricted to be nonnegative. In
both cases, the restrictions on the component matrices make
the pattern of ‘degeneracy’ impossible. The idea to impose
orthogonality restrictions is originally due to Harshman and
Lundy [12].

To guarantee the existence of an optimal CP solution in the
unrestricted CP model, De Silva and Lim [17] propose to consider
the closure of the setDR in the optimization problem (6). For each
array format I × J × K and value of R this involves characterizing
the boundary arrays ofDR . For I × J × 2 arrays, this has been done

by Stegeman [14,16]. Using these results, a method to avoid type I
‘degeneracy’ for I × J × 2 arrays is proposed in Stegeman and De
Lathauwer [27]. Instead of the CP model, they propose to fit the
SGSD introduced in De Lathauwer et al. [28]. In matrix notation,
the SGSD model for an array X is

Xk = QaRkQ
T
b + Ek, k = 1, . . . K (7)

whereQa (I × R) andQb (J × R) are column-wise orthonormal and
Rk are R × R upper triangular, k = 1, . . . , K . The matrices Qa, Qb

and Rk are determined by minimizing the sum-of-squares of the
residuals Ek , k = 1, . . . , K . For R = I = J, a Jacobi-type algorithm
is presented in De Lathauwer et al. [28], and an extended QZ
algorithm is developed by Van der Veen and Paulraj [29]. In
Stegeman and De Lathauwer [27] the Jacobi-type algorithm is
generalized to R ≤ I and R ≤ J.

Analogous to Equation (5), let

SR = {Y ∈ RI×J×K : Y has a full SGSD with R components} (8)

In general, there holdsDR ⊂ SR . Indeed, supposeX satisfies the CP
model (2) with perfect fit. Let A = QaRa be a QR-decomposition
of A, with Qa column-wise orthonormal and Ra upper triangular.
Analogously, let B = QbLb be a QL-decomposition of B, with Qb

column-wise orthonormal and Lb lower triangular. Then Xk =
Qa(RaCkLT

b )QT
b , k = 1, . . . , K , is a full SGSD for X. The converse

is not generally true, however. A class of I × J × 2 arrays X with
a full R-component SGSD but rank larger than R can be found in
Stegeman and De Lathauwer [27].

Stegeman and De Lathauwer [27] show that the SGSD model
(7) always has an optimal solution. Moreover, for I × J × 2 arrays
the set SR is the closure of DR . Hence, for I × J × 2 arrays and X
outside ofDR , the optimal SGSD solution, if it is unique, is the limit
point of the sequence of CP updates, whether the latter becomes
‘degenerate’ or not. Stegeman and De Lathauwer [27] show that
the optimal SGSD solution may be written as the sum of the ‘non-
degenerate’ rank-1 arrays from the sequence of CP updates, and
a Tucker3 part with a sparse core array. The latter part is the limit
point of the ‘degenerate’ part of the sequence of CP updates. This
representation of the optimal SGSD solution is obtained from
the Jordan normal form of R2R

−1
1 . Although the representation

is not a decomposition into rank-1 arrays, it is a sparse and
rotationally unique decomposition and its constituting parts may
be interpretable to the researcher. During the execution of the
SGSD algorithm in Stegeman and De Lathauwer [27] no problems
of slow convergence occurred, while applying a CP algorithm
directly would have often resulted in a type I ‘degeneracy’.

The fact that a ‘degenerate’ sequence of CP updates converges
to a Tucker3 limit is mathematical proof of the data-analytic
explanation for ‘degeneracy’ proposed by Harshman and Lundy
[12], Lundy et al. [30] and Harshman [31]. These authors state
that ‘degeneracy’ occurs when ‘Parafac is trying to model Tucker
variation’. Examples of ‘degenerate’ sequences of CP updates
converging to a Tucker3 limit can also be found in Paatero [13].

4. USING THE SGSD TOOVERCOME
TYPE II ‘DEGENERACY’?

As mentioned in Section 2, several modified CP algorithms
have been proposed with the aim of getting through ‘swamps’
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faster. Here, we discuss the possibility of using the SGSD model
(7) instead of the CP model for this purpose. Due to the
orthogonality restrictions on Qa and Qb, these matrices cannot
have nearly linearly dependent columns. Moreover, the SGSD
model is guaranteed to have an optimal solution. These facts
suggest that using the SGSD model instead of the CP model may
prevent ‘degeneracy’ of type I as well as type II from occurring.
Two observations argue against this optimism, however.

The first observation is the following. As explained in the
previous section, there holds DR ⊂ SR . To obtain a ‘good’
CP solution from the optimal SGSD solution, the latter is
approximated from the set DR . This can be done by solving a
system of linear equations, as described in De Lathauwer et al.
[28]. However, the thus obtained CP solution may not be optimal,
especially when a considerable amount of noise is present. This
is because, contrary to the I × J × 2 case, in general SR is not the
closure of DR .

The second observation is made by considering the numerical
experiments in De Lathauwer et al. [28]. These show that cases
of slow convergence also occur when fitting the SGSD model.
In particular, Reference [28] consider the case where the array
X satisfies a CP decomposition (with some noise added) and
vary the condition number of one component matrix. Slow
convergence when fitting the SGSD model occurs for large
condition numbers. The Jacobi-type algorithm of [28] is more
prone to this behavior than the extended QZ algorithm of Van
der Veen and Paulraj [29], however.

All things considered, the SGSD model seems worth a try. In the
next section, we construct an array X from a CP decomposition in
which the first two columns ofA, B and C are nearly proportional,
with some noise added to it. Based on the discussion on type II
‘degeneracy’ in Section 2, we conjecture that when fitting the CP
model to X, the algorithm must pass through a ‘swamp’ region
before it reaches the underlying CP solution. We fit the SGSD
model to X and compute the CP solution closest to the optimal
SGSD solution. For varying degrees of collinearity in A, B, C and
several different noise levels, this method is compared with a
standard CP algorithm.

5. NUMERICAL EXPERIMENTS

Here, we conduct a Monte Carlo study to evaluate the SGSD
method as explained in the previous section. Our study is
modeled after the one conducted by Tomasi and Bro [3]. We
construct arrays X of size 20 × 20 × 20 as follows. The matrices
A, B and C are 20 × 4 and randomly sampled from the normal
distribution with mean 0 and variance 1. Next, their first columns
are determined as

a1 = a2 + dya, b1 = b2 + dyb, c1 = −c2 + dyc (9)

where ya, yb and yc are randomly sampled from the normal
distribution with mean 0 and variance 1, and d is a scalar whose
value is varied during the experiments. Clearly, smaller values
of d result in higher degrees of collinearity in A, B and C. The
array X is then constructed by the CP model (1), where the noise
array E is randomly sampled from the normal distribution with
mean 0 and variance 1, and normalized such that the noise
percentage (‖E‖ relative to ‖X‖) has a fixed value, see Tomasi and
Bro [3, Appendix D]. We consider the values d = 0.25, d = 0.4
and d = 0.7 and noise percentages 1, 5 and 10. To diminish the

influence of chance on our results, we generate 20 arrays X as
above, for each combination of d and noise percentage. Hence, a
total of 180 arrays are generated in our Monte Carlo study.

It can be seen that the k-ranks ofA,B and C are all equal to four.
Since R = 4, the uniqueness of the CP decomposition follows
from Equation (4).

The degree of ‘degeneracy’ of two CP components is usually
measured by the ‘triple cosine’ or ‘congruence’. For the first two
components, this quantity is defined as

aT
1a2

‖a1‖ ‖a2‖
bT

1b2

‖b1‖ ‖b2‖
cT

1c2

‖c1‖ ‖c2‖ (10)

where each term is the cosine of the angle between the first
and second vector. The congruence lies between −1 and 1, and
a congruence close to −1 indicates a two-factor ‘degeneracy’
as defined in Section 2. Table I contains the median values
of the congruence between the first two components and the
condition numbers of the generated A, B and C. As can be
seen, d = 0.25 yields a congruence of approximately −0.9, while
d = 0.4 and d = 0.7 correspond to a congruence of −0.8 and
−0.5, respectively. The values −0.5 and −0.9 were also used
in the Monte Carlo study of Tomasi and Bro [3]. The condition
numbers in Table I are slightly larger than in Reference [3]. In
Figure 1, the variation of the congruence for the three values of
d can be seen. For each d, 60 decompositions are generated (20
for each noise level). Also, the relation between the congruence
and the sum of the condition numbers of A, B and C is plotted
for all 180 generated decompositions. As expected, smaller
congruences and larger condition numbers occur together.

We apply three algorithms to X with the aim of obtaining
the true A, B and C of the CP decomposition of X. The first
two algorithms fit the four-component SGSD model to X, and
compute the closest CP solution to the optimal SGSD solution.
As SGSD algorithms we use the Jacobi-type algorithm of De
Lathauwer et al. [28] (modified for R ≤ I and R ≤ J as described
in Stegeman and De Lathauwer [27]) and the extended QZ
algorithm of Van der Veen and Paulraj [29] (modified for R ≤ I and
R ≤ J analogously). For the computation of the closest CP solution
to the optimal SGSD solution, we use the method described in De
Lathauwer et al. [28]. We compare these two algorithms to the
standard ALS CP algorithm with R = 4. Despite its simplicity, the
latter proves to be a fast and accurate algorithm in the Monte
Carlo study of Tomasi and Bro [3]. Note that our Monte Carlo
study differs from the numerical experiments of De Lathauwer et
al. [28], who compare the two SGSD algorithms for arrays with
a CP decomposition in which the condition number of only one
component matrix is varied.

Table I. Median values of the congruence between the first
two components and the condition numbers of the component
matrices

d = 0.25 d = 0.4 d = 0.7

Congruence −0.91 −0.81 −0.52
Cond(A) 9.5 6.2 3.5
Cond(B) 8.5 6.4 3.5
Cond(C) 10.0 6.5 5.0

www.interscience.wiley.com/journal/cem Copyright © 2009 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 385–392
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Figure 1. Congruence between the first two components for the values d = 0.25 (+), 0.4 (∗) and 0.7 (◦) in the left figure, and the relation between the
congruence and the sum of the condition numbers of the true component matrices in the right figure.

The SGSD Jacobi algorithm monotonically decreases the sum-
of-squares of the below-diagonal parts of Rk , k = 1, . . . , 20. A
relative decrease of this quantity below 1e-9 is used as a
stopping criterion. For the extended QZ algorithm monotonic
convergence does not hold and a different stopping criterion
needs to be chosen. For this, the Frobenius norm of the difference
between the rotations to update Qa and Qb and diagonal
matrices, is used. The algorithm stops when this quantity falls
below a threshold of 1e-9. For the ALS CP algorithm the stopping
criterion is a relative decrease of the error sum-of-squares below
1e-9.

For each run of the algorithms, their initial values are
determined as follows. For the SGSD algorithms, five iterations
of the SGSD Jacobi algorithm are performed for 10 random initial
values. The best result from these 10 runs is used as initial value for
both the SGSD Jacobi and extended QZ algorithms. For the ALS
CP algorithm, five ALS iterations are performed for 10 random
initial values. The best result is used as initial value.

To determine whether the true CP decomposition is recovered,
we compute the congruence of the obtained CP solution with
the true CP decomposition. For a full recovery of the true
CP decomposition, the congruence must be higher than some
threshold value for all four true components. The same criterion
is used in Tomasi and Bro [3]. Table II contains the percentages
of full recovery for the three algorithms, different values of d

and noise percentages, and congruence thresholds of 0.95 and
0.97. For d = 0.4 and 0.7 there is not much difference between
the methods. For d = 0.25 the SGSD methods are less accurate
than the ALS CP algorithm, especially for higher noise levels. The
SGSD extended QZ algorithm yields the least accurate results
in this case. Note that all three methods were able to recover
the third and fourth components in all runs. The differences
in accuracy occur due to failure to recover the first two nearly
collinear components. The accuracy of the SGSD extended QZ
algorithm did not improve for a stopping criterion of 1e-12
or when relative decrease of error sum-of-squares is used as a
stopping criterion.

The error sum-of-squares between X and the obtained CP
decomposition was smallest for ALS CP in all 180 runs. This

Table II. Percentages of full recovery for the three algorithms.
Each cell contains the percentages for noise levels 1, 5 and 10

d = 0.25 d = 0.4 d = 0.7

SGSD Jacobi 100, 90, 75 100, 100, 100 100, 100, 100
SGSD ext QZ 100, 85, 65 100, 100, 100 100, 100, 100
ALS CP 100, 100, 95 100, 100, 100 100, 100, 100

SGSD Jacobi 100, 85, 60 100, 100, 100 100, 100, 100
SGSD ext QZ 100, 70, 45 100, 100, 80 100, 100, 95
ALS CP 100, 100, 90 100, 100, 100 100, 100, 100

Congruence thresholds are 0.95 (top rows) and 0.97 (bottom
rows).

is as expected since the SGSD methods need an additional
approximation step to obtain a CP decomposition. In 158
of the 180 runs, the error sum-of-squares was smaller for
the SGSD Jacobi algorithm than for the SGSD extended QZ
algorithm.

Next, we consider the time consumption of the three
algorithms. For the SGSD algorithms, this includes the time to
compute a CP decomposition from the obtained SGSD solution.
In Table III, the median values of time consumption are given
for the different values of d and noise percentage. As can be

Table III. Median values of time consumption in seconds for
the three algorithms

d = 0.25 d = 0.4 d = 0.7

SGSD Jacobi 3.1, 1.3, 1.3 1.2, 0.6, 0.8 0.9, 0.8, 0.7
SGSD ext QZ 2.7, 1.9, 1.2 1.1, 1.1, 1.2 0.5, 0.4, 0.4
ALS CP 3.3, 3.6, 2.9 1.4, 1.1, 0.9 0.2, 0.2, 0.2

Each cell contains the times for noise levels 1, 5 and 10.

J. Chemometrics. 2009; 23: 385–392 Copyright © 2009 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 2. Histograms of time consumption for all 180 runs of the SGSD Jacobi (left), SGSD extended QZ (middle) and ALS CP (right) algorithms.

seen, the times go down when more noise is added. Fitting an
array with a less ‘degenerate’ CP decomposition takes less time
for all three algorithms. For d = 0.25 both SGSD algorithm are
faster than ALS CP, for d = 0.4 one of the SGSD algorithms is
faster than ALS CP, and ALS CP is fastest for d = 0.7. A striking
difference between the algorithms is seen in Figure 2, where
histograms of the time consumption are depicted. Both the SGSD
Jacobi and ALS CP algorithms have long tails on their times
distribution. The SGSD extended QZ algorithm on the other hand
does not seem to be affected by slow convergence at all. This
was also observed in the numerical experiments conducted by
De Lathauwer et al. [28]. Note that apart from two extremely long
runs (51 and 80 s) the histogram of the time consumption of the
SGSD Jacobi algorithm is about the same as that of the ALS CP
algorithm.

Although the SGSD methods are faster for higher degrees of
collinearity in the true A, B and C, they are less accurate than
ALS CP in these cases. Hence, our Monte Carlo study does not
yield good results for the SGSD methods. Next, we assess the
performance of the three algorithms in a situation where the
true A, B and C have high condition numbers but the pattern
of a ‘degeneracy’ is absent. Also, very little noise is added.
This case is considered in Hopke et al. [32]. We consider their
simulated datasets PP1 and PP2. For PP1, we take the true
A, B and C from Hopke et al. [32, Figure 1]. The array X has
size 10 × 8 × 5 and R = 3 in its CP decomposition. The added
noise is 0.025 times a randomly sampled array from the normal
distribution with mean 0 and variance 1. For PP2, we take the
true A, B and C from Hopke et al. [32, Figure 2]. The array X has
size 10 × 8 × 5 and R = 4 in its CP decomposition. The added
noise is 0.001 times a randomly sampled array as for PP1. The
condition numbers for A, B and C in PP1 are 18, 18 and 83,
respectively. The smallest congruence between two components

equals 0.22. Hence, we have high condition numbers for the
component matrices but no pattern of ‘degeneracy’ as described
in Section 2. For PP2, the condition numbers for A, B and C are
49, 48 and 52, respectively. The smallest congruence between
two components equals 0.01. Note that the condition numbers
for PP1 and PP2 are much larger than in our Monte Carlo study
above. For both datasets the component matrices have full k-
rank and uniqueness of the CP decompositions follows from
Equation (4).

For PP1 and PP2, we generated 20 arrays with random noise
and applied the three algorithms with the correct number of
components. The stopping criteria were set at 1e-6. Table IV
contains the percentages of full recovery and time consumption
of the three algorithms. The algorithms are approximately equally
accurate, but as in our Monte Carlo study their time consumption
differs dramatically. While the SGSD Jacobi and ALS CP algorithms
have a highly varying time consumption, the SGSD extended QZ
algorithm is consistently much faster. Hence, it seems that in cases
of little noise and large condition numbers of A, B and C the
SGSD extended QZ algorithm is to be preferred, while in cases of
more noise and up to moderate condition numbers the ALS CP
algorithm (or possibly another CP algorithm) is the best choice.

Another possibility was suggested by an anonymous reviewer:
try to combine the best of the SGSD extended QZ algorithm (i.e.
speed) with the best of the ALS CP algorithm (i.e. accuracy). For
example, one could use the outcome of the SGSD extended QZ
algorithm as initial values for ALS CP. We tried this in our first
Monte Carlo study (results not reported). Although, this increases
the accuracy of ALS CP somewhat, extremely long runs still
occur in ALS CP. Moreover, the total time consumption of SGSD
extended QZ and ALS CP together is about 1.5 times as large as
when ALS CP is run with initial values chosen as in the simulations
described above.

Table IV. Percentages of full recovery (congruence ≥ 0.97) and median, minimum and maximum values of time consumption in
seconds for the three algorithms and datasets PP1 (top rows) and PP2 (bottom rows)

Full recovery (%) Median time Min time Max time

SGSD Jacobi 100 9.9 5.5 27.0
SGSD ext QZ 85 0.14 0.09 0.47
ALS CP 100 2.4 0.03 7.0

SGSD Jacobi 80 9.0 5.6 36.3
SGSD ext QZ 95 0.25 0.20 0.34
ALS CP 90 9.7 4.9 62.3
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6. DISCUSSION

In this paper, we discussed the phenomenon of ‘degeneracy’
when fitting the CP model. We mentioned that two types
of ‘degeneracy’ can be distinguished. The first type is due
to the non-existence of an optimal CP solution. To overcome
this type of ‘degeneracy’ the CP model must be changed
somehow, either by imposing additional restrictions (such
as orthogonality or non-negativity) or by solving a closely
related model (such as the SGSD model) and approximating
its optimal solution by a CP decomposition. The second type
of ‘degeneracy’ occurs when the sequence of CP updates
passes through a region of slow convergence (a ‘swamp’) before
terminating at the optimal solution. In this case, modified CP
algorithms designed to spend less time in ‘swamps’ may be a
cure.

We proposed to use the SGSD method for the latter purpose.
In our Monte Carlo study, we assessed the performance of
two SGSD algorithms and compared it to the standard ALS CP
algorithm. In cases where the true CP decomposition resembles
a two-factor ‘degeneracy’ the SGSD algorithms are faster but
less accurate than ALS CP. However, the accuracy of the SGSD
algorithms improves when the component matrices have larger
condition numbers and the noise level is lower. We conjecture
that this is due to the true CP decomposition being closer to
the boundary of DR . Then the distance between the optimal
SGSD solution and its approximation by a CP decomposition is
smaller.

As in the numerical experiments of De Lathauwer et al. [28],
we observed that the SGSD extended QZ algorithm has a very
consistent low time consumption as compared to the SGSD
Jacobi and ALS CP algorithms. For the difference between the
two SGSD algorithms, we suggest the following explanation.
Both algorithms are designed to minimize the sum-of-squares
of the below-diagonal parts of Rk , k = 1, . . . , K . The SGSD Jacobi
algorithm decreases this quantity monotonically, while the SGSD
extended QZ algorithm does not. In each iteration, the SGSD
Jacobi algorithm applies orthogonal rotations to the rows and
columns of the Rk such that the most energy is transferred
from their below-diagonal parts to their upper-triangular parts,
averaged over all upper-triangular elements and all k. The SGSD
extended QZ algorithm works in the same way, except that the
rotations are determined such that the most energy is transferred
to the diagonals ofRk . This mechanism within the SGSD extended
QZ algorithm may function as a tendency to ‘move towards
a CP decomposition with orthogonal A and B’ (the latter has
diagonal Ck instead of upper-triangular Rk ). Combined with its
non-monotonic convergence, this may explain why the SGSD
extended QZ algorithm is less affected by ‘swamps’ than the SGSD
Jacobi algorithm.

For the computation of a ‘good’ approximation of the
optimal SGSD solution by a CP decomposition we solved an
overdetermined system of linear equations, as proposed by De
Lathauwer et al. [28]. When the obtained CP decomposition
has ill-conditioned A, B or C, this linear system also becomes
ill-conditioned. In our Monte Carlo experiments, however, we
encountered no problems when solving this linear system. In
the numerical experiments of Stegeman and De Lathauwer [27]
‘degeneracy’ of type I occurs and the linear system becomes too
ill-conditioned to solve numerically. This problem is circumvented
by using the Jordan transform ofR2R−1 instead. In cases where the
true CP decomposition features exact proportional columns ofA,

B or C, the SGSD algorithms can still be used. The linear system,
however, then becomes singular and has no unique solution.
This reflects the non-uniqueness of the CP decomposition in this
case.
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